3.3.31 \(\int \frac {\tanh ^3(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [231]

Optimal. Leaf size=47 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b} \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)-(a+b*tanh(x)^2)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 457, 81, 65, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^3/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] - Sqrt[a + b*Tanh[x]^2]/b

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^3(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx &=\text {Subst}\left (\int \frac {x^3}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {x}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {\sqrt {a+b \tanh ^2(x)}}{b}+\frac {1}{2} \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {\sqrt {a+b \tanh ^2(x)}}{b}+\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 47, normalized size = 1.00 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^3/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] - Sqrt[a + b*Tanh[x]^2]/b

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(128\) vs. \(2(39)=78\).
time = 0.73, size = 129, normalized size = 2.74

method result size
derivativedivides \(-\frac {\sqrt {a +b \left (\tanh ^{2}\left (x \right )\right )}}{b}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(129\)
default \(-\frac {\sqrt {a +b \left (\tanh ^{2}\left (x \right )\right )}}{b}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(129\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a+b*tanh(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(a+b*tanh(x)^2)^(1/2)/b+1/2/(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(
x)-1)+a+b)^(1/2))/(tanh(x)-1))+1/2/(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*
(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^3/sqrt(b*tanh(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 530 vs. \(2 (39) = 78\).
time = 0.44, size = 1625, normalized size = 34.57 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + b)*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3
+ a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^
3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^
3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3
 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2
*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2
*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b
^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh
(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b -
 b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 +
2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(
x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7
+ 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*s
inh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh
(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + b)*sqrt(a + b)*
log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(
x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x
)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(
x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*(a + b)*sqrt(((a + b)*cosh(x)^2
+ (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b + b^2)*cosh(x)^2 + 2*(a*b + b
^2)*cosh(x)*sinh(x) + (a*b + b^2)*sinh(x)^2 + a*b + b^2), -1/2*((b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)
^2 + b)*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*co
sh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 +
a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b
- b^2)*cosh(x))*sinh(x))) + (b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + b)*sqrt(-a - b)*arctan(sqrt(2)*
(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a -
 b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*si
nh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cos
h(x))*sinh(x) + a + b)) + 2*sqrt(2)*(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 -
2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b + b^2)*cosh(x)^2 + 2*(a*b + b^2)*cosh(x)*sinh(x) + (a*b + b^2)*sinh(x)^
2 + a*b + b^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh ^{3}{\left (x \right )}}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**3/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**3/sqrt(a + b*tanh(x)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 345 vs. \(2 (39) = 78\).
time = 0.62, size = 345, normalized size = 7.34 \begin {gather*} -\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {4 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b}\right )}}{{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b)
- sqrt(a + b)*(a - b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2
*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b
*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/sqrt(a + b) - 4*(sqrt(a + b)*e^(2*x) - sqrt(a*e^
(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b))/((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) +
 b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a
*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)

________________________________________________________________________________________

Mupad [B]
time = 1.69, size = 39, normalized size = 0.83 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a + b*tanh(x)^2)^(1/2),x)

[Out]

atanh((a + b*tanh(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(1/2) - (a + b*tanh(x)^2)^(1/2)/b

________________________________________________________________________________________